

FILE OPERATIONS Pg. 1

Linux Essentials – Module 3
 FILE OPERATIONS

MODULE OBJECTIVE

$Use file operation utilities to copy, rename, delete, and print files; and to
manage the directory structure; and do so in regards to access
permissions

 LESSON OBJECTIVES

C Manipulate files with the commands “cp”, “mv”, “rm”

C Manage the directory structure with the commands “mv”, “mkdir”, “rmdir”

C Understand file/directory access permissions, and be able to modify them.

FILE OPERATIONS Pg. 2

NOTE: Many of the basic concepts related to file operations to be discussed in the next
few pages are pretty straightforward and thus most of the learning mettle of these topics
will be presented in lab rather in the textual discussion.

Copy, move and remove files

The cp command will copy a file to another location while changing the filename,
resulting in an original and a copy of that file. The mv command will rename the
file, leaving it in the same location or a new location, resulting in only one version
of the file. The “rm” command will delete (remove) the command from the
system.

Coping Files with cp

 Copy a file when you want to make a new version of it while retaining the old

Version. The file listed first is the original file followed by the name of the new file
being created (cp {from} {to}).

 $ cp file1 file2
 $ cp file3 /tmp/filex
 $ cp ../fileA fileB
 $ cp /etc/passwd myfile-passwd
 $ cp /etc/passwd .

As always we can subsitiute relative addressing for absolute anywhere we desire such
as using the “.” (dot) to indicate to copy to the current directory as in the last example
above:

Renaming Files with mv.

 This works like cp, except the new copy takes the place of the old. And thus the

command can have the affect of moving a file to a wholly new location, or
renaming the file, or a combination thereof. (mv {from oldfile} {to newfile})

 $ mv myfile-passwd passwd.myfile

FILE OPERATIONS Pg. 3

Removing Files with rm

 $ rm passwd.myfile
 $ rm /tmp/filex

Note: Using the “-i” option with any of these commands on the previous page will

prompt you before overwriting an existing file.

 $ rm –i somefile
 (you’ll be asked if you are sure)

Creating a new (sub)directory

 $ mkdir mydir
 $ mkdir ../myotherdir
 $ mkdir /tmp/someotherdir

Removing a directory

 $ rmdir /tmp/someotherdir

If a directory being removed is non-empty the system will require you to empty it
of all content (files, sub-directories, etc…) before removing it. You can get around
this by using a version of the ‘rm’ command the ‘f’ (force) and ‘r’ (recursive)
switches to force removal of all file and recursively all sub-directories.

$ rm –rf mydir

FILE OPERATIONS Pg. 4

Remote Coping of Files with scp

The are a number of network utilities which allow a user to copy files between
connected system. The “ftp” utility has been the workhorse in this for many many
years. ftp is an interactive command, meaning that it takes several steps and
answering prompts and supplying commands to complete the process. Though
perhaps still the most commonly used command for a machine to machine file
copy, we won’t go into here for one simple reason – it is insecure. The NWS has
proclaimed that sites should migrate away from using ftp to file copy routines that
are apart of the Open-ssh (secure shell) suite. scp is it. It is secure in that unlike
ftp the transmission of the data and all keystrokes is encrypted. Furthermore scp
is actually easier to use, as its syntax and operation is very much like cp, except
that we are transferring files between machines and thus at a minimum the
remote machine needs identified as part of the command input:

 $ scp file1 machineZ:/tmp/file1

 The above command copies file1 from the current working directory on the

local machine to the /tmp directory on a machine named machineZ. Below is an
example using ip-address instead of the machines hostname.

 $ scp ../fileA 192.168.21.242:/home/data

 The direction or the copy can be reversed. As you may have gathered the syntax

is : scp {filefrom} {fileto} – remote location specification can occur for either the
from or the to.

 $ scp ntc242.nwstc.noaa.gov:/home/student1/Afile /tmp

In the above example we are coping the remote file Afile to the local /tmp
directory. As always we can subsitiute relative addressing for absolute anywhere
we desire such as using the “.” (dot) to indicate to copy to the current directory:

 $ scp ntc242.nwstc.noaa.gov:/home/student1/Afile /tmp

*** The above discussion only show examples of how the scp command can be used in
practice; Understand for any network operation to succeed the system administrator has
to ensure that network connectivity is in place between the two systems, and the
appropriate network services are up and running (the discussion of which is beyond the
scope of this course).

FILE OPERATIONS Pg. 5

*** With all file operations commands the ability to perform the desired operation
is dependent upon your user account having the authority to work with the
specified files and/or directories in the ways in which you wish to work with them.
You have to have ‘permission’ to work with files and directories, and so this
seems a good time to go there.

FILE PERMISSIONS

OVERVIEW

Part of the power of LINUX is in the access and security (permissions) for files
and directories, allowing the owner of files the ability to work with and also grant or deny
access to others to those files and directories. Permissions of files and directories are
just another part of security on UNIX systems. Knowing how to read these permissions
and what they mean are essential for the user to ensure who has access to their files,
thus ensuring the integrity of the user’s files and data. We will see how to use the ls
command to list the file and directory permissions and the chmod command to change
these permissions.

 To have a good understanding of how these permissions work, the user must
understand Users and Groups. A user is lie you of course - a single unique logon
account. When you as a user create a file you are said to be the owner of a file. You
saw (and will see again) this as one of the fields in the “ls –l” command (the 3rd field in
the display). A group is just as it’s sounds – a group of users - a set of user accounts
that have something in common. For example you may have a group called “hydro” of
which all the users who are actually hydrologists belong. Or perhaps a group called
“mids” of which all the user accounts which belong to mid-shift workers are assigned.
User accounts can be members of multiple groups and thus if there was a hydrologist
that worked mids, his/her user account would likely be made a member of both groups.
Why put user accounts in groups ? . Well, it stands to reason that there groups of users
may need access to a common set of files that – e.g. the hydrologists will likely share
files that relate to river level for example. They can thus get access to files, by virtue of
being group members, even though some of them won’t be the actual owner (e.g.
creators) of the files. What group has access to a specific file or directory can also be
viewed with the ‘ls -l’ command (the 4th field of the display)

Once the user understands what permissions are, and how they are used, they
should know how to change these permissions to limit or grant file/directory access to
those who need it. With this understanding, understanding how and why you can
change the ownership of files and directories, will be simple with the chown command.

FILE OPERATIONS Pg. 6

Listing Directory and File Permissions

 Earlier in the course we discussed using the ls command to list filenames, and
using ls -l command to get a long listing of file information including the file permissions.
At this point we are only going to concern ourselves with the first part of the listing, the
File Type and Permissions.

 The first 10 characters are the file type and permissions. File types, the first
character, can be a dash (-) for a file, or the letter (d) for a directory, or the letter (l –
ell) for a link, or the letters (b, c, p, n, and s) can be further researched with the
command “man ls”.

 At this point we want to discuss the user access permissions which are the
remaining 9 characters, broken into groups of 3 (called octets for the octal base 8
numbering system).

 $ ls -l
 Total 62
 drwxrwxr-w 2 zarf student 1024 Sep 30 10:38 front_porch
 -rw-rw---- 1 zarf student 19987 Sep 30 10:38 grade_me.sh
 -rw-rw---- 1 zarf student 4875 Sep 30 10:38 lab1.txt

 - r w - r w - - - - 1 zarf student 4875 Sep 30 10:38 lab1.txt
 type owner group other links owner group size mod date filename

So the access mode of a file consists of these 4 parts:

 1) file type
 2) access permissions read, write or execute for owner, group, and other
 3) the owner of the file (UID)
 4) the group of the file (GID)

The file type is displayed in the first character of the first field of the output from the
command ls -l . Common file types are: "d" = directory, "-" = regular file, and "l" =
symbolic link. There may be other characters used "b,c,p,s", but our concern is the "d
and -" characters.

FILE OPERATIONS Pg. 7

The next nine characters of the first field are interpreted as three sets of three bits each
which identify access permissions for the file owner, file group, and others (everyone
else).

 Three classes of users can access files and directories: owner, group, and other.
For each of these classes of users, there are three types of access permissions: read,
write, and execute. The access permissions on a file or directory specify how it can be
accessed by the owner, group, and other users classes.

 A Comparison of Permissions for Directories and Files

Permissions Means This For a Directory Means This For a File

read (r) Users can view names of
files and directories in that
directory.

Users can view the
contents of the file.

write (w) Users can create, rename,
or remove files or directories
contained in that directory.

Users can change the
contents of the file.

execute (x) Users can position
themselves within that
directory with the ‘cd’
command.

Users can execute (run)
the file (if it is an
executable file or script)
by typing the filename at
the command line
prompt.

 You should always be aware of the permissions assigned to your files and
directories. Check your files and directories periodically to make sure appropriate
permissions are assigned. If you find any unfamiliar files in your directories, report them
to the system administrator or security officer.

FILE OPERATIONS Pg. 8

Some examples may help:

All of the following examples assume that user student1 and user student2 are in the
group unixintro. The directory sample_dir is in /home/student1.

Example: drwx rwx --- 2 student1 unixintro 1024 Jun 11 14:36 sample_dir
 student2 can: cd, ls -l , cp, rm, touch, vi and execute files

Example: drwx r-x --- 2 student1 unixintro 1024 Jun 11 14:36 sample_dir
 student2 can: cd, ls -l , cp, and execute files
 student2 can not: rm, touch or vi files

Example: drwx rw- --- 2 student1 unixintro 1024 Jun 11 14:36 sample_dir
 student2 can: ls files
 student2 can not: cd, ls -l, cp, rm, touch or vi files

Example: drwx -wx --- 2 student1 unixintro 1024 Jun 11 14:36 sample_dir
 student2 can: cd, rm, touch, vi, cp (without wildcards) and execute files
 student2 can not: ls, ls -l, cp files

Example: drwx r-- --- 2 student1 unixintro 1024 Jun 11 14:36 sample_dir
 student2 can: ls
 student2 can not: cd, ls -l, cp, rm, touch, vi or execute files

Example: drwx -w- --- 2 student1 unixintro 1024 Jun 11 14:36 sample_dir
 student2 can not: cd, ls, ls -l, cp, rm, touch, vi or execute files (no permissions)

Example: drwx --x --- 2 student1 unixintro 1024 Jun 11 14:36 sample_dir
 student2 can: cd, cp, touch existing files, vi existing files or execute files
 student2 can not: ls, ls -l, rm, touch new files or vi new files

*** Be sure to look over the above examples carefully, as understanding of them is quite
important.

FILE OPERATIONS Pg. 9

Changing File Permissions

File permissions can only be changed by the file's owner or the Superuser (root).
Changing file permissions is done by using the chmod command.

 The chmod command allows you to specify permissions in two different ways:
symbolic or numeric.

SYMBOLIC PERMISSIONS

Syntax: chmod [who] operator [permissions] filename

who user, group, other, all
operator + (add) - (remove) = (set equal to)
permission read, write, execute

Original permissions: mode user group other
 -rw-r--r-- rw- r-- r--

 chmod u+x,g+x,o+x filename OR chmod a+x filename

Both of these commands will add the permission x to user, group, and other

Result permissions: mode user group other
 -rwxr-xr-x rwx r-x r-x

Example: chmod g+w,o-x filename

adds w to group, and removes x from other

Result permission: mode user group other
 -rwxrwxr-- rwx rwx r--

Example: chmod u=rwx,g=rx,o=r filename

Overlays the current permissions with the equals (=) permissions

Result permission: mode user group other
 -rwx r-x r-- rwx r-x r--

FILE OPERATIONS Pg. 10

Numeric Method:

(This next idea may come across as a big “huh” . But don’t fret too much – if you get it
great – if not, the literal method hopefully will serve you well.)

The second form of input that chmod accepts is absolute numeric values for
permissions. Before you can learn how to use this notation, you have to understand the
BINARY (Base 2) and OCTAL (Base 8) numbering system.

In the decimal system, what most are used to, use the digits 0 thru 9. The far right digit
is the least significant digit equaling 1, the next place is 10's, next 100's and so on
moving to the left.

 100 10 1
 1 6 9 100 + 60 + 9 = 169

The binary system uses only two digits, 0 and 1. The place values from right to left are
1's, 2's, 4's, 8's. For our purposes, we will only concern ourselves with the first three
places 1,2, and 4 having the values to add up to a total of 7.

 4 2 1
 0 1 1 0 + 2 + 1 = 3
 1 0 1 4 + 0 + 1 = 5

Remember, the permissions are divided into three groups of three. These can be
converted to decimal notation and used with the chmod command. If you want a
permission set, it's a 1 and if not it will be a 0.

FILE OPERATIONS Pg. 11

So … the following is a list of permission, binary, and decimal conversions:

 Permission Binary Equivalent Decimal Equivalent

 --- 000 0
 --x 001 1
 -w- 010 2
 -wx 011 3
 r-- 100 4
 r-x 101 5
 rw- 110 6
 rwx 111 7

It is the Decimal number we are looking for ultimately as this number will be used when
setting permission using the numeric method. It may be hard for this to stick to begin
with, but if you work with this a number of time, you will get to a point that you will know
for example that 6 means read-write.

FILE OPERATIONS Pg. 12

The trick of working with chmod in numeric mode, is that you specify the file access
mode for the user, group and other as a three-digit number. The system then sets the
permissions of the file or directory appropriately.

 NUMERIC PERMISSIONS

Syntax: chmod (###) filename

Original permissions: r-xr--r-- r-x r-- r--
 5 4 4

 chmod 755 filename

Resulting permissions: rwxr-xr-x rwx r-x r-x
 7 5 5

 chmod 744 filename

Resulting permissions: rwx r-- r-- rwx r-- r--
 7 4 4

Note: A file with -wx, can’t be executed if it can’t be read.

FILE OPERATIONS Pg. 13

The following is a symbolic to numeric conversion chart for file permissions.

 Permissions Numeric Used with/for

 --------- 000 all types (no access)

 r-------- 400 files (read for owner only)

 r--r--r-- 444 files (read-write for all)

 rw------- 600 files (read-write owner only)

 rw-r--r-- 644 files (read-write owner only; read everyone else)

 rw-rw-r-- 664 files (read-write owner and group members; read
 everyone else)

 rw-rw-rw- 666 files (read-write everyone)

 rwx------ 700 programs (read-write-execute owner only)

 directories (read-write-execute owner only – list files,
 create/remove files, and use cd)

 rwxr-x--- 750 programs (read-write-execute owner only; for
 group read-execute)

 directories(read-write-execute owner only – list files,
 create/remove files, and use cd; for
 group read-execute – list and cd)

 rwxr-xr-x 755 programs (read-write-execute owner only; for
 everyone else read-execute)

 directories(read-write-execute owner only – list files,
 create/remove files, and use cd; for
 everyone else read-execute, list and cd)

FILE OPERATIONS Pg. 14

 Changing Ownership and Groups on a file or directory

You may find you want to change the ownership of a file to another user. This is
accomplished with the chown command.

CAUTION!! Only the owner and the root can change the ownership of a file. So, once

the ownership of a file is changed to another user, it cannot be changed
back, except by the new owner.

The group field in the long listing identifies what user & group has access to this file. To
change the group access of a file you would use the chgrp command.

The following example will copy a file to another users home directory and change the
group access to this file. Then change the ownership of that file to the new user.

chgrp newgroup filename
&
chown owner [:group] filename Changing the group at this time in a single
 command instead of separately is also
 possible.
 $ id
 UID=612(user3) GID=504(class) groups=504(class)
 $ pwd
 /home/user3
 $ cp file1 /home/user2/file1
 $ ls -l /home/user2/file1
 -rw-r--r-- 1 user3 class 3697 JAN 24 13:13 file1

 $ chgrp class2 /home/user2/file1
 $ ls -l /home/user2/f1
 -rw-r--r-- 1 user3 class2 3697 JAN 24 13:13 file1

 $ chown user2 /home/user2/file1
 $ ls -l /home/user2/file1
 -rw-r--r-- 1 user2 class2 3697 JAN 24 13:13 file1

FILE OPERATIONS Pg. 15

Using the chmod Command to Set File and Directory Permissions

Setting or Changing File Permissions

 You can specify permissions for chmod, using the letters u, g, and o, as
symbolic code for the owner (u), group (g), and other (o). This symbolic mode is easy
to remember, since the symbols r, w, and x are used directly as arguments in the
command. The chmod syntax uses the +, -, and = signs and where the “u,g,o” are the
class and the “r,w,x” are the modes.

 $ chmod class [+-=] mode , class [+-=] mode , class [+-=] mode filename

When permissions are being set the same, you can also combine the arguments
as:

 $ chmod ugo=r myfile2

 Set the modes or permissions absolutely by using the = sign.

 $ chmod u=rwx,g=rw,o=rw myfile2
 $ ls -l myfile2
 -rwxrw-rw- 1 student1 linuxclass 1024 Sep 26 09:21 myfile2

 Modes or permissions are added with the + sign. Separate each “class -
operator - mode” grouping with a comma and no space:

 $ ls -l myfile2
 -rw- - - - - - - 1 student1 unixintro 1024 Sep 26 09:21 myfile2
 $ chmod u+x,g+rw,o+rw myfile2
 $ ls -l myfile2
 -rwxrw-rw- 1 student1 unixintro 1024 Sep 26 09:21 myfile2

FILE OPERATIONS Pg. 16

 Modes or permissions are deleted using the - sign.

 $ ls -l myfile
 -rwxrw-rw- 1 student1 unixintro 1024 Sep 26 09:21 myfile2
 $ chmod g-w,o-w myfile2
 $ ls -l myfile2
 -rwxr- -r- - 1 student1 unixintro 1024 Sep 26 09:21 myfile2

Setting or Changing Directory Permissions

 Changing the permissions on a directory is accomplished in the same manor as
changing permissions on a file. The same commands using the u,g,o (class) and r,w,x
(modes) are used, producing the same permission results.

 The difference between file and directory permissions are in what they allow the
different class users to do. Where the r,w,x on a file seems pretty simple, the r,w,x on a
directory have a little different meaning. The previous table gave an overview of what
the permissions on a file and directory will allow. The following are some examples of
file and directory permissions.

 Permissions Set on a File
Type This Permissions Set So That ...

chmod u=r,g=,o= myfile1
-r- - - - - - - -

The user can read from myfile1, and no one (including
the user) can write to it.

chmod ugo=r myfile1
-r- - r- - r- -

Everyone can read from myfile1, but no one can write to
it.

chmod u=rw,go=r myfile1
-rw-r- - r- -

Only the user can write to myfile1, but everyone can read
it.

chmod ug=rw,o=r myfile1
-rw-rw-r- -

Only the user and members of your group can write to
myfile1, but everyone can read it.

chmod ugo=rw myfile1
-rw-rw-rw-

Everyone can read or write to myfile1

FILE OPERATIONS Pg. 17

 Permissions Set on a Directory

Type This Permissions Set So That ...

chmod u=rwx,go=rx projects
drwxr-xr-x

Allow other users and groups to list and access the
files in projects, but not to create or remove files from
it.

chmod ugo=rwx projects
drwxrwxrwx

Allow all users to list, create, remove, and access
files in projects.

chmod u=rwx,go=-
drwx- - - - - -

Allow only yourself to list, create, remove, and access
files in projects.

An again to review … Obsolete Method of Setting Modes on Files and Directories

 $chmod 755 my_dir

FILE OPERATIONS Pg. 18

All of the operations we have discussed so far can be accomplished via a GUI if you are
in a desktop environment such as Gnome or KDE . Many of the file manipulation
operations can be initiated either by right-clicking on a file, or by highlighting a file then
selecting operations from the File pull-down menu.

As we’ve also note in module 1, even file permissions can be maintined through a GUI.
From Gnome’s Nautilus File-manger you right-click to get the properties window and the
choose the Permissions tab:

FILE OPERATIONS Pg. 19

 PRINTING DOCUMENTS

Generating printouts is a common task that should be fairly easy. However, there are
differences in this area between various UNIX and Linux varieties. Basic tasks include
starting (lp), stopping (cancel), and finding the status of a users print job (lpstat).

Starting a Print Job

NOTE: In a GUI environment, lp requests can also be initiated by dragging a

filename to the printer icon and dropping it. This sends a print request to
the scheduler through lp, the same as if you had typed it at the command
line. Recall from module 1:

Print Manager

Click on this panel icon and the print manager will

automatically start. This application can be used to add or remove
printers and printer queues, There are no graphical tools to start
printing. You can start a printing from a command in a terminal
window.

 Printing text files is accomplished through the lp command.

 $ lp filename Sends the text file to the default printer

 $ lp -d PRINTERNAME filename Sends the text file to a specific printer

 $ lp myfile1

$ lp -d UNIXLAB1 myfile1

 In either case the lp command will return a status message indicating that your
file was assigned a request ID and sent to the printer.

FILE OPERATIONS Pg. 20

Stopping a Print Job Using the “cancel” Command

 The cancel command is used to stop print jobs, even if they are currently printing.
It is commonly used to stop a single print job, but it can be used to stop all jobs on a
particular printer, and all jobs owned by a particular user.

 $ cancel PRINTERNAME-number Cancels the print job with that number

only

 $ cancel -e PRINTERNAME Cancels the print jobs for that user, on

the specified printer

 To cancel a print request, enter the cancel command with the “request ID”
number.

 $ lp /etc/passwd
 request id is UNIXLAB1-4 (1 file)
 $ cancel UNIXLAB1-4
 request "UNIXLAB1-4" cancelled

 To cancel all print requests sent to a printer, use the “-e” option.
 NOTE: The “-e” option is used by the superuser, ALL print jobs cancel

$ lp /etc/passwd ; lp /etc/group
request id is UNIXLAB1-5 (1 file)
request id is UNIXLAB1-6 (1 file)
$ cancel -e UNIXLAB1
cancel: You must have root capability to use this option
root:ntc231# cancel -e unixlab1
request "UNIXLAB1-5" cancelled
request "UNIXLAB1-6" cancelled

FILE OPERATIONS Pg. 21

Displaying Printer Status Information

 The lpstat command is used to display printer status. The lpstat -t option will
display all status information.

 Finding Printer Information Using the “lpstat” command

 $ lpstat -t Lists all print status information.

 The following example displays all status information for the printers in the Linux

lab.

 $ lpstat -t
 scheduler is running
 system default destination: UNIXLAB1
 device for UNIXLAB1: socket://192.168.21.245:9100
 UNIXLAB1 accepting requests since Aug 29 14:45

printer UNIXLAB1 is idle. enabled since Aug 29 14:45
$

FILE OPERATIONS Pg. 22

LAB

Your practical exercises for this
module:

Again log onto the NWSTC student server (204.227.127.133) and practice more
Linux commands. If you need the instructions again they can be found at the following
link:

http://webdev.nwstc.noaa.gov/d.train/linuxinstr.html

Remember:

1. You are encouraged to EXPERIMENT in this course and try various
commands, so that you SUCCEED in the field and subsequent training.

2. DO NOT enter the commands robotically without trying to understand them in

the process. Your success at further Linux training and actual work in the field is wholly
dependant upon grasping the subject matter in this course.

http://webdev.nwstc.noaa.gov/d.train/linuxinstr.html

FILE OPERATIONS Pg. 23

 EXERCISE 1

$ Use UNIX commands mkdir, touch, cp, mv, rm, and rmdir to create and delete

sub-directories and files and copy and move files. This lab is
designed to challenge you a bit in that you will not be given the
exact commands to type.

Let’s play house …

(The following questions require the directory "front_porch" to be present in
your home directory. If it is not present, contact Jim Kaplafka or
Dave Rowell or at the NWSTC.)

Oops - your fridge is on the fritz.

 1. Use the "mkdir" command to make two new directories in your kitchen
 - "trash_can" and "cooler"

 2. Use the "mv" command to move unspoiled food from "fridge" to "cooler".

 3. Use the "mv" command to move spoiled food to the "trash_can".

 4. Use the "rmdir" command to remove the fridge.

 5. Sell something to buy a new fridge (suggested items may be a lamp, a rug, or
 a bicycle. Find one of them and remove it with the ‘rm’ command.

 6. All this certainly caused a headache. Pills are the answers. Find them and bring
 some of them(copy “cp” them) to the kitchen

FILE OPERATIONS Pg. 24

 7. By the way pills are not a good thing to keep laying about the house when you
 have many children in the house (as you do), so let’s secure them. Let’s make
 both copies so that only you (the owner) can open them (write) and ingest them
 (execute). It may be good however that everyone can read them for caution’s
 sake (so use the ‘chmod’ command to set the file permissions to rwxr—r--).

END EXERCISE

A little further background information via the ‘man’ pages or an internet
search on the Linux file permission mechanism may be of interest to you, and will
become more pertinent when performing systems administration: /etc/passwd,
/etc/group, UID, GID, umask

End

This is the end of this module. At this time you should
proceed to module 4.

